LEICA VT 1000 E / M
Vibrating Blade Microtome

Localization of Nerve Cell Antigens
in Rat Brain

Francisco Javier García-Ladona PhD,
Knoll AG (BASF Group), CNS Department, D-67008 Ludwigshafen
Introduction

Immunohistochemistry is an important research method to study the central nervous system (CNS). During the last three decades, different immunodetection systems have been developed. CNS antigens can be detected by isotopic, enzymatic and fluorescence systems. Although these methods can be used on brain sections obtained with a cryostat, more accurate localization and superior morphological detail requires the use of non-frozen tissue. Vibrating blade microtomes have been successfully used in such situations. These microtomes use a knife that cuts in two perpendicular directions and the tissue is permanently immersed in a physiological buffer, cooled with ice, to ensure optimum preservation. Sections prepared using a vibrating blade microtome demonstrate excellent preservation of tissue antigenicity and are ideal for morphological studies.

The immunohistochemical localization of neuronal markers has become an important method to study morphological characteristics, pathological states or biochemical changes in different nerve cells of brain. In these studies, good preservation of tissue antigenicity and good penetrability of antibodies are important. The aim of the present work was to localize different CNS markers using the LEICA VT 1000 E vibrating blade microtome. We studied three neuronal markers (Syntxin, Calbindin D and Heat Shock Protein 70) and one astrocytic marker (Glial Fibrillary Acidic Protein).

Material and methods

Antibodies and reagents

Antibodies raised against different CNS markers (anti-GFAP, anti-MAP2, anti-Syntaxin, anti-Calbindin D, anti-HSP70), secondary antibodies (anti-mouse IgG, anti-rabbit IgG, anti-mouse IgG-FITC, anti-mouse IgG-TRITC, rabbit PAP complex, monoclonal PAP complex), normal serum and bovine serum albumin (BSA) were purchased from Sigma-Aldrich Chemie GmbH (Germany). All other reagents including Entellan® were analytical grade from E. Merck (Germany).

Tissue

Sprague-Dawley rats (180-230 g) were perfused with physiological saline (0.85% NaCl) followed by 4 % paraformaldehyde in phosphate buffer saline (PBS). Brains were rapidly dissected and postfixed for 1 hour at room temperature. Tissues were washed in PBS, 4 °C overnight. Appropriate pieces of brain tissue were glued onto a specimen plate with Roticol®, a cyanoacrylate based glue. Tissue sections were obtained with the LEICA VT 1000 E vibrating blade microtome, provided with a buffer tray cooled with crushed ice, to maintain physiological conditions and prevent tissue from drying during sectioning. Sections, 30 μm thick, were obtained using a frequency setting between 2 and 9, and speed <1 on the scale, and processed for immunohistochemistry as follows.

Immunohistochemistry

Brain sections from different areas were treated for 15 min. at 4°C with methanol/H2O2 (25:100). Following washing in PBS (3 x 10 min., sections were incubated for 1 hour at room temperature with a blocking mixture containing 5% normal goat serum (NGS) and 3% BSA in Tris buffer saline (TBS). Sections were incubated overnight at 4°C with different sera against several CNS markers diluted in TBS / 5% NGS / 3% BSA. Afterwards, they were washed (3 x 15 min., room temperature) in TBS / 0.5% BSA and processed differently depending on the detection system. Antisera were diluted as follows: anti-Syntaxin (1/1000), anti-Calbindin-D (1/300), anti-MAP2 (1/400), anti-HSP-70 (1/350) and anti-GFAP (1/80).

PAP detection system

Brain sections were incubated with goat anti-mouse IgG serum (1/160) - when primary antibodies were monoclonal - or with goat anti-rabbit IgG (1/80) - when primary antibodies were raised in rabbits. After washing in TBS, tissue sections were incubated with PAP complex raised in rabbits or with monoclonal PAP complex. Peroxidase reaction was developed by incubation in TBS containing DAB substrate (0.6 mg/ml) and H2O2 (0.03%). Sections were washed, dehydrated and mounted with Entellan®.
General discussion

The immunohistochemical localization of the different neuronal and glial cell markers studied here agrees with previous reports. Using sections of fixed brain obtained with the LEICA VT 1000 E vibrating blade microtome, we were able to detect presynaptic (Syntaxin) (Fig. 1) as well as postsynaptic (Calbindin D, HSP70, MAP2) neuronal markers with excellent anatomical resolution. Antiserum raised against HSP, clearly detects this protein in its cytoplasmic localization in normal brain (Fig. 11). Calbindin D- and MAP2-positive neurons can be clearly observed in hippocampal, cortical or cerebellar sections (Fig. 6). Note the detection of Calbindin D-positive axons in cerebellum (Fig. 5) and the morphological resolution of axons in Calbindin D- (Fig. 2, 3, 4) and MAP2-positive cells (Fig. 9, 10) in hippocampus and cortex. In these sections anti-GFAP antibodies revealed thin astrocytic processes in the brain cellular matrix and in tight contact with blood vessels (Fig. 7, 8).

Sections used for this study clearly demonstrate absence of cross striations, tissue shrinkage and artifactual staining. Such artifacts are common observations in sections obtained with vibrating blade microtomes. Immunofluorescence detection of CNS antigens in sections obtained with the LEICA VT 1000 E also demonstrate good preservation of tissue morphology and antigenicity (see Fig. 12) and therefore their suitability for this type of immunodetection systems. Sections as thin as 10 – 15 µm can be prepared using the LEICA VT 1000 E vibrating blade microtome, these sections, devoid of artifactual staining, demonstrate excellent cellular detail. The technological advances incorporated in the LEICA VT 1000 E allow high quality sections to be prepared for detection of CNS antigens using a large variety of immunodetection systems.

Light microscopical analysis

Figure 1: CA3 field of rat hippocampus. Syntaxin positive axon terminals over pyramidal cells. 40 µm section. 400x.

Figure 2: Calbindin D positive neurons in rat brain cortex. 30 µm section. 200x.

Figure 3: Calbindin D positive neurons in rat brain cortex. 30 µm section. 200x.

Figure 4: Calbindin D positive interneurons in CA1 field of rat hippocampus. 30 µm section. 200x.

Figure 5: Calbindin D positive Purkinje cells in rat cerebellum. Note the dendritic three in the molecular layer and the axons running in the white matter. 30 µm section. 200x.

Figure 6: Calbindin D positive Purkinje cells in rat cerebellum. Note the dendritic three in the molecular layer. 30 µm section. 200x.
Light microscopical analysis

Figure 7: GFAP positive astrocytes in rat hippocampus. Note the astrocyte processes surrounding the blood vessel. 30 µm section. 200x.

Figure 8: GFAP positive astrocytes in the granular layer of rat cerebellum. 40 µm section. 1000x.

Figure 9: MAP2 positive neurons in rat brain cortex. 30 µm section. 400x.

Figure 10: MAP2 positive interneurons in hilus of rat hippocampus. 30 µm section. 200x.

Figure 11: Granule cells of Dentate Gyrus constitutively expressing HSP70 protein. 30 µm section. 400x.

Figure 12: Labeling of cholinergic septal neurons in rat basal forebrain by using a polyclonal antiserum against choline acetyltransferase (CHAT). Slide prepared by Andreas Schober PhD, Department of Anatomy and Cell Biology II, University of Heidelberg, Germany.

Acknowledgement: Philip Hyam, Leica Canada, for revision of the manuscript.

For further information please contact your local Leica sales company

Australia: North Ryde/NSW Phone +61 2 886 3000 Fax +61 2 888 7526
Austria: Vienna Phone +43 1 495 44 16-0 Fax +43 1 495 44 16-30
Canada: Wilkowdale/Ontario Phone +1 416 497 2461 Fax +1 416 497 2053
Denmark: Glostrup Phone +45 4343 4488 Fax +45 4343 1441
Finland: Espoo Phone +358 0 5022 399 Fax +358 0 5022 398
France: Rueil-Malmaison Phone +33 1 4732 8383 Fax +33 1 4732 8386
Germany: Bonnheim Phone +49 6251 1360 Fax +49 6251 136 155
Hong Kong (also for China): Phone +852 564 2299 Fax +852 564 4163
Italy: Mailand Phone +39 2 5740 1955 Fax +39 2 5740 3475
Japan: Tokyo Phone +81 3 3292 9810 Fax +81 3 3292 9772
Korea: Seoul Phone +82 2 514 6543 Fax +82 2 514 6548
Netherlands: Rijswijk Phone +31 703 198 999 Fax +31 703 905 659
Norway: Oslo Phone +47 22 252 270 Fax +47 22 163 232
Portugal: Lisbon Phone +351 1 388 9112 Fax +351 1 3854 668
Singapore: Phone +65 77 97 823 Fax +65 77 30 628
Spain: Barcelona Phone +34 3 4141 818 Fax +34 3 4141 238
Sweden: Kista Phone +46 8 782 3000 Fax +46 8 782 3003
Switzerland: Gianhbrugg Phone +41 1 809 3311 Fax +41 1 810 7937
United Kingdom: Milton Keynes Phone +44 1 908 666 663 Fax +44 1 908 669 992
USA: Deerfield/Illinois Phone +1 800 248 0123 Fax +1 708 405 0147

Our mission is to be the world's first-choice provider of innovative solutions to our customers' needs for vision, measurement and analysis.

...and more than 100 national distributors.

Leica Instruments GmbH - P.O. Box 1120 - Heidelberger Strasse 17-19 - D-69226 Nassloch - Germany - Phone: (0 62 24) 143-0 - Telefax: (0 62 24) 143 200